O Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Como o nome indica, o filtro de média móvel opera pela média de um número de pontos do sinal de entrada para produzir cada ponto no sinal de saída. Na forma da equação, esta é escrita: onde é o sinal de entrada, é o sinal de saída e M é o número de pontos na média. Por exemplo, em um filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isso corresponde à alteração da soma na Eq . 15-1 de: j 0 a M -1, para: j - (M -1) 2 para (M -1) 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode correr de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos em apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e de saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos possui o kernel de filtro: 82300, 0, 15, 15, 15, 15, 15, 0, 08230. Ou seja, o filtro médio móvel é uma convolução do sinal de entrada com um impulso retangular com um Área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Resposta de freqüência do filtro de média móvel e do filtro FIR Compare a resposta de freqüência do filtro de média móvel com o do filtro FIR normal. Defina os coeficientes do filtro FIR regular como uma seqüência de 1s escalados. O fator de escala é 1filterLength. Crie um objeto do sistema dsp. FIRFilter e defina seus coeficientes para 140. Para calcular a média móvel, crie um objeto dsp. MovingAverage System com uma janela deslizante de comprimento 40 para calcular a média móvel. Ambos os filtros têm os mesmos coeficientes. A entrada é o ruído branco gaussiano com uma média de 0 e um desvio padrão de 1. Visualize a resposta de freqüência de ambos os filtros usando fvtool. As respostas de freqüência correspondem exatamente, o que prova que o filtro de média móvel é um caso especial do filtro FIR. Para comparação, veja a resposta de freqüência do filtro sem ruído. Compare a resposta de freqüência dos filtros com a do filtro ideal. Você pode ver que o lobo principal na banda passadeira não é plano e as ondulações no stopband não são limitadas. A resposta de frequência da média móvel de filtros não corresponde à resposta de frequência do filtro ideal. Para realizar um filtro FIR ideal, mude os coeficientes do filtro para um vetor que não seja uma seqüência de 1s escalados. A resposta de freqüência do filtro muda e tende a se aproximar da resposta de filtro ideal. Desenhe os coeficientes do filtro com base em especificações de filtro predefinidas. Por exemplo, projete um filtro FIR equiripple com uma freqüência de corte normalizada de 0,1, uma ondulação de banda passante de 0,5 e uma atenuação de faixa de parada de 40 dB. Use fdesign. lowpass para definir as especificações do filtro e o método de design para projetar o filtro. A resposta dos filtros na banda passante é quase plana (semelhante à resposta ideal) e a banda de interrupção tem equiripples restritos. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Por favor, veja mathworkstrademarks para obter uma lista de outras marcas registradas pertencentes à The MathWorks, Inc. Outros produtos ou nomes de marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione os conceitos básicos do filtro CountryFIR 1.1 O que é quotFIR filtersquot Os filtros FIR são um dos dois principais tipos de filtros digitais utilizados nas aplicações DSP (Digital Signal Processing), sendo o outro tipo IIR. 1.2 O que quotFIRquot significa quotFIRquot significa quotFinite Impulse Responsequot. Se você colocar um impulso, isto é, uma única amostra de quot1quot seguida por muitas amostras de quot0quot, os zeros sairão depois que a amostra de quot1ch foi feita através da linha de atraso do filtro. 1.3 Por que a resposta ao impulso é quotfinitequot No caso comum, a resposta ao impulso é finita porque não há feedback na FIR. A falta de feedback garante que a resposta ao impulso será finita. Portanto, o termo quotfinite impulso responsequot é quase sinônimo de quotno feedbackquot. No entanto, se o feedback for empregado, a resposta ao impulso é finita, o filtro ainda é uma FIR. Um exemplo é o filtro de média móvel, no qual a Nth amostra anterior é subtraída (alimentada de volta) cada vez que uma nova amostra entra. Esse filtro possui uma resposta de impulso finito mesmo que use feedback: após N amostras de um impulso, a saída Será sempre zero. 1.4 Como faço para quotFIRquot Algumas pessoas dizem que as letras F-I-R outras pessoas pronunciam como se fosse um tipo de árvore. Nós preferimos a árvore. (A diferença é se você fala sobre um filtro F-I-R ou um filtro FIR). 1.5 Qual é a alternativa aos filtros FIR Os filtros DSP também podem ser QuotInfinite Impulse Responsequot (IIR). (Consulte as perguntas frequentes de dspGurus IIR). Os filtros IIR usam comentários, então, quando você insere um impulso, a saída toca teoricamente por tempo indeterminado. 1.6 Como os filtros FIR se comparam aos filtros IIR Cada um tem vantagens e desvantagens. No geral, porém, as vantagens dos filtros FIR superam as desvantagens, então são usadas muito mais do que IIRs. 1.6.1 Quais são as vantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR oferecem as seguintes vantagens: podem ser facilmente concebidos para serem quotlinear phasequot (e geralmente são). Simplificando, os filtros de fase linear atrasam o sinal de entrada, mas donrsquot distorce sua fase. Eles são simples de implementar. Na maioria dos microprocessadores DSP, o cálculo do FIR pode ser feito fazendo uma única instrução em loop. Eles são adequados para aplicações de taxa múltipla. Por taxa múltipla, queremos dizer quotdecimationquot (reduzir a taxa de amostragem), quotinterpolationquot (aumentar a taxa de amostragem), ou ambos. Se diz ou interpola, o uso de filtros FIR permite que alguns dos cálculos sejam omitidos, proporcionando assim uma eficiência computacional importante. Em contraste, se os filtros IIR forem usados, cada saída deve ser calculada individualmente, mesmo que a saída seja descartada (então o feedback será incorporado no filtro). Eles têm propriedades numéricas desejáveis. Na prática, todos os filtros DSP devem ser implementados usando aritmética de precisão finita, ou seja, um número limitado de bits. O uso de aritmética de precisão finita em filtros IIR pode causar problemas significativos devido ao uso de feedback, mas os filtros FIR sem feedback geralmente podem ser implementados usando menos bits e o designer tem menos problemas práticos para resolver relacionados à aritmética não ideal. Eles podem ser implementados usando aritmética fracionada. Ao contrário dos filtros IIR, sempre é possível implementar um filtro FIR usando coeficientes com uma magnitude inferior a 1,0. (O ganho global do filtro FIR pode ser ajustado na sua saída, se desejado.) Esta é uma consideração importante ao usar DSP de ponto fixo, porque torna a implementação muito mais simples. 1.6.2 Quais são as desvantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR às vezes têm a desvantagem de que exigem mais memória e ou cálculo para atingir uma determinada característica de resposta do filtro. Além disso, certas respostas não são práticas de implementar com os filtros FIR. 1.7 Quais são os termos utilizados na descrição dos filtros FIR Resposta de Impulso - A resposta de preço razoável de um filtro FIR é, na verdade, apenas o conjunto de coeficientes de FIR. (Se você colocou um quotimplusequot em um filtro FIR que consiste em uma amostra de quot1quot seguida de muitas amostras de quot0quot, a saída do filtro será o conjunto de coeficientes, uma vez que a 1 amostra passa por cada coeficiente, por sua vez, para formar a saída.) Tap - Um quottaq de FIR é simplesmente um par de coeficientes de conversão. O número de torneiras FIR, (geralmente designado como quotNquot) é uma indicação de 1) a quantidade de memória necessária para implementar o filtro, 2) o número de cálculos necessários e 3) a quantidade de quotfilteringquot que o filtro pode efetuar, Mais torneiras significa mais atenuação de parada, menos ondulação, filtros mais estreitos, etc. Multiply-Accumulate (MAC) - Em um contexto FIR, quotMACquot é a operação de multiplicação de um coeficiente pela amostra de dados atrasada correspondente e acumulando o resultado. As FIR normalmente requerem um MAC por toque. A maioria dos microprocessadores DSP implementam a operação MAC em um único ciclo de instruções. Banda de transição - A faixa de freqüências entre banda passante e bordas de banda de parada. Quanto mais estreita a banda de transição, mais torneiras são necessárias para implementar o filtro. (Uma banda de transição quotsmallquot resulta em um filtro quotsharpquot.) Linha de atraso - O conjunto de elementos de memória que implementam os elementos de atraso quotZ-1quot do cálculo do FIR. Buffer circular - Um buffer especial que é quotcircularquot porque o incremento no final faz com que ele envolva ao início, ou porque decrementar desde o início faz com que ele envolva até o final. Os buffers circulares geralmente são fornecidos por microprocessadores DSP para implementar o quotmovementquot das amostras através da linha de atraso FIR sem ter que mover literalmente os dados na memória. Quando uma nova amostra é adicionada ao buffer, ele substitui automaticamente o mais antigo.
No comments:
Post a Comment